Автономная некоммерческая профессиональная образовательная организация «КАЛИНИНГРАДСКИЙ КОЛЛЕДЖ УПРАВЛЕНИЯ»

Утверждено Учебно-методическим советом Колледжа протокол заседания № 81 от 30.10.2025

ОСНОВЫ ПРОЕКТИРОВАНИЯ ИНФОРМАЦИОННЫХ СИСТЕМ (ОП.09)

По специальности 09.02.13 «Интеграция решений с применением

технологий искусственного интеллекта»

Квалификация «Специалист по работе с искусственным

интеллектом»

Форма обучения Очная

Лист согласования рабочей программы дисциплины

Рабочая программа дисциплины ОП.09 «Основы проектирования информационных систем» разработана в соответствии с федеральным государственным образовательным стандартом среднего профессионального образования, утвержденным приказом Минпросвещения от 24.12.2024 № 1025 «Об утверждении федерального государственного образовательного стандарта среднего профессионального образования по специальности 09.02.13 Интеграция решений с применением технологий искусственного интеллекта.

Рабочая программа дисциплины рассмотрена и одобрена на заседании Учебнометодического совета колледжа, протокол № 81 от 30.10.2025г.

Регистрационный номер 16ИИ/25

- 1 Цели и задачи освоения дисциплины
- 2 Место дисциплины в структуре ОПОП
- 3 Перечень планируемых результатов обучения по дисциплине (модулю), соотнесенных с планируемыми результатами освоения образовательной программы
- 4 Объем, структура и содержание дисциплины в зачетных единицах с указанием количества академических/астрономических часов, выделенных на контактную работу обучающихся с преподавателем (по видам занятий) и на самостоятельную работу обучающихся.
- 5 Перечень образовательных (информационных) технологий, используемых при осуществлении образовательного процесса по дисциплине, включая перечень программного обеспечения, современных профессиональных баз данных и информационных справочных систем
- 6 Оценочные средства и методические материалы по итогам освоения лиспиплины
- 7 Основная и дополнительная учебная литература, и электронные образовательные ресурсы, необходимые для освоения дисциплины
- 8 Дополнительные ресурсы информационно-телекоммуникационной сети «Интернет» необходимые для освоения дисциплины
- 9 Требования к минимальному материально-техническому обеспечению, необходимого для осуществления образовательного процесса по дисциплине

Приложение 1. Оценочные средства для проведения входного, текущего, рубежного контроля и промежуточной аттестации обучающихся по дисциплине и методические материалы по ее освоению

1. Цели и задачи освоения дисциплины

Целями освоения дисциплины ОП.09 «Основы проектирования информационных систем» являются: формирование у обучающихся прочных теоретических знаний и практических навыков в области важнейших разделов высшей математики, овладение основными понятиями, теоремами и методами математического анализа, линейной алгебры, аналитической геометрии, начала теории вероятности и статистики, развитие способности применять полученные знания для решения конкретных прикладных задач в своей будущей профессиональной деятельности, воспитание умения самостоятельно изучать литературу по математике и другим естественно-научным дисциплинам, требующим знания высшей математики, повышение уровня общей культуры и интеллектуальной готовности выпускников вуза к восприятию новых научных знаний и технологий.

Задачами освоения дисциплины «Основы проектирования информационных систем» являются:

1. Формирование фундаментальных понятий:

Изучение ключевых концепций информационных систем: жизненного цикла ИС, моделей проектирования (водопадная, итеративная, гибкие методологии), архитектурных подходов (клиент-сервер, многоуровневая, облачная), принципов анализа и моделирования бизнес-процессов, а также основ системного анализа и требований к программному обеспечению.

2. Развитие практических навыков:

Освоение методов сбора и анализа требований к информационной системе, построения диаграмм (например, Use Case, диаграмм деятельности, потоков данных), проектирования структуры баз данных и пользовательских интерфейсов, а также навыков документирования проектной документации и взаимодействия с заинтересованными сторонами.

3. Применение полученных знаний в профессиональной деятельности:

Применение системного подхода к проектированию ИС для решения реальных бизнес-задач: от автоматизации документооборота до разработки корпоративных информационных платформ; умение выявлять узкие места в существующих процессах и предлагать ИТ-решения, обеспечивающие эффективность, масштабируемость и безопасность.

4. Подготовка к дальнейшему обучению:

Создание прочной основы для освоения профильных дисциплин: «Проектирование баз данных», «Разработка программного обеспечения», «Архитектура информационных систем», «Управление ИТ-проектами», «Бизнес-аналитика», а также для участия в командной разработке и реализации реальных ИТ-проектов.

Программа составлена в соответствии с требованиями Федерального закона от 29.12.2012 № 273-ФЗ (ред. от 23.05.2025) «Об образовании в Российской Федерации», Приказа Министерства просвещения Российской Федерации от 24 августа 2022 г. № 762 «Порядок организации и осуществления образовательной деятельности по образовательным программам среднего профессионального образования», ФГОС СПО и учебным планом по специальности: 09.02.13 «Интеграция решений с применением технологий искусственного интеллекта».

2. Место дисциплины в структуре ППССЗ

Учебная дисциплина ОП.09 «Основы проектирования информационных систем» входит в общепрофессиональный цикл.

Изучается на втором курсе в третьем семестре на базе основного общего образования. Промежуточная аттестация проводится в форме зачета с оценкой.

В результате освоения дисциплины обучающийся должен:

уметь:

- применять методы системного анализа и моделирования для проектирования информационных систем в соответствии с требованиями предметной области;
- использовать стандартные нотации и инструменты (например, UML, BPMN, ERмоделирование) для описания архитектуры, процессов и структуры данных информационной системы;

знать

- основные принципы жизненного цикла информационных систем, методологии проектирования и анализа требований;
 - ключевые концепции архитектуры ИС, моделирования бизнес-процессов, проектирования баз

3. Перечень планируемых результатов обучения по дисциплине (модулю), соотнесенных с планируемыми результатами освоения образовательной программы

Результатами освоения рабочей программы учебной дисциплины является овладение студентами следующими компетенциями:

- ОК 01. Выбирать способы решения задач профессиональной деятельности применительно к различным контекстам.
- ОК 02. Использовать современные средства поиска, анализа и интерпретации информации, и информационные технологии для выполнения задач профессиональной деятельности.
 - ПК 1.2. Разрабатывать программные модули в соответствии с техническим заданием.
 - ПК 1.3. Оформлять программный код в соответствии с техническим заданием.

Личностные результаты реализации программы воспитания

- Осознавать себя гражданином России и защитником Отечества, выражать свою российскую идентичность в поликультурном и многоконфессиональном российском обществе, и современном мировом сообществе. Сознавать свое единство с народом России, с Российским государством, демонстрирующий ответственность за развитие страны. Проявлять готовность к защите Родины, способность аргументированно отстаивать суверенитет и достоинство народа России, сохранять и защищать историческую правду о Российском государстве.
- Проявлять и демонстрировать уважение законных интересов и прав представителей различных этнокультурных, социальных, конфессиональных групп в российском обществе; национального достоинства, религиозных убеждений с учётом соблюдения необходимости обеспечения конституционных прав и свобод граждан. Понимать и деятельно выражать ценность межрелигиозного и межнационального согласия людей, граждан, народов в России. Выражать сопричастность к преумножению и трансляции культурных традиций и ценностей многонационального российского государства, включенный в общественные инициативы, направленные на их сохранение социальных перемен.
- Демонстрировать готовность и способность вести диалог с другими людьми, достигать в нем взаимопонимания, находить общие цели и сотрудничать для их достижения в профессиональной деятельности.
- Проявлять сознательное отношение к непрерывному образованию как условию успешной профессиональной и общественной деятельности.
- Проявлять ценностное отношение к культуре и искусству, к культуре речи и культуре поведения, к красоте и гармонии.

4. Объем, структура и содержание дисциплины с указанием количества академических часов, выделенных на контактную работу обучающихся с преподавателем (по видам занятий) и на самостоятельную работу обучающихся.

4.1 Объем дисциплины

Таблица 1 – Трудоемкость дисциплины

Объем дисциплины	Всего акад.
Оовем днециплины	часов
Всего академических часов учебных занятий	62
В том числе:	
контактной работы обучающихся с преподавателем	58
по видам учебных занятий:	
занятий лекционного типа	22
занятия семинарского типа	34
Самостоятельная работа обучающихся:	4
Промежуточная аттестация – зачет с оценкой	2

4.2. Структура дисциплины

Таблица 2 – Структур дисциплины

Раздел дисциплины	Семестр	Неделя семестра	Всего	Виды учебной работы, включая самостоятельную работу обучающихся и трудоемкость (в часах ауд.)			Вид контроля*
				Лекции	Практ. зан.	СРС	
Раздел 1. Основы проектирования информационных систем	3	1-6	16	6	10	-	Текущий контроль Рубежный контроль
Раздел 2. Инструменты и технологии проектирования информационных систем	3	7-12	20	8	12	-	Текущий контроль
Раздел 3. Экономика и эффективность информационных систем	3	13-17	20	8	12	-	Текущий контроль
Зачет с оценкой	3	17	6	-	2	4	Промежуточная аттестация
Всего учебная нагрузка обучающихся			62	22	36	4	

4.3. Содержание дисциплины, структурированное по темам (разделам)

4.3.1. Теоретические занятия- лекции

Таблица 3 – Содержание лекционного курса

Наименование раздела (модуля) дисциплины, темы	Содержание	Кол-во часов	Форма проведения занятия	Оценочное средство
	рования информационных систем	0		
	Содержание		лекция-	Устный опрос
1 0 0 1	Основные элементы информационных систем, их	2	визуализация	
информационной системы	функции и задачи.			
Тема 1.2. Этапы	Содержание	4	лекция-	Устный опрос.
проектирования		4	визуализация	Рубежный

1 1	Этапы жизненного цикла разработки информационных систем: анализ, проектирование, внедрение.			контроль
Раздел 2. Инструменты и	технологии проектирования информационных систем	8		
Тема 2.1. Инструменты	Содержание		лекция-	Устный опрос
проектирования	Программные средства для проектирования (CASE- средства,	4	визуализация	
информационных систем	UML).			
Тема 2.2. Проектирование	Содержание		лекция-	Устный опрос
интерфейсов и модулей	Основы проектирования пользовательских интерфейсов и	4	визуализация	
информационной системы	модульной архитектуры.			
Раздел 3. Экономика и эф	фективность информационных систем	8		
Тема 3.1. Оценка	Содержание		лекция-	Устный опрос
	Методы оценки затрат и эффективности внедрения	8	визуализация	
эффективности	информационных систем.	O		
информационных систем				
Всего:		22		

4.3.2. Занятия семинарского типа

Таблица 4 – Содержание практического (семинарского) курса

Темы практических занятий		Форма проведения занятия	Оценочное средство
Раздел 1. Основы проектирования информационных систем	12		
Практическая работа №1: Анализ существующих информационных систем и их структуры.	4	практическое занятие в форме практикума.	Устный опрос
Практическая работа №2: Построение блок-схемы информационной системы.	4	практическое занятие в форме практикума.	Устный опрос
Практическая работа №3: Разработка технического задания для информационной системы.	4	практическое занятие в форме практикума.	Устный опрос
Раздел 2. Инструменты и технологии проектирования информационных систем	12		
Практическая работа №4: Составление плана разработки и внедрения информационной системы.	4	практическое занятие в форме практикума.	Устный опрос
Практическая работа №5: Построение UML- диаграммы для проекта информационной системы.	4	практическое занятие в форме практикума.	Устный опрос

Практическая работа №6: Использование CASE- средств для	4	практическое занятие в	Устный опрос
проектирования базы данных информационной системы.	•	форме практикума.	
Раздел 3. Экономика и эффективность информационных систем	10		
Практическая работа №7: Разработка прототипа пользовательского	2	практическое занятие в	Устный опрос
интерфейса.	2	форме практикума.	
Практическая работа №8: Создание модульной архитектуры для	2	практическое занятие в	Устный опрос
информационной системы.	2	форме практикума.	
Практическая работа №9: Расчёт затрат на разработку и внедрение	4	практическое занятие в	Устный опрос
информационной системы.	4	форме практикума.	
Практическая работа №10: Анализ показателей эффективности внедрения	2	практическое занятие в	Устный опрос
(ROI, TCO).	2	форме практикума.	
Всего	50		

4.3.3. Самостоятельная работа

Таблица 5 – Самостоятельная работа

№ п/п	Тема	Кол-во часов	Оценочное средство
1.	Подготовка к зачету с оценкой	4	Зачет с оценкой
	Всего	4	

5. Перечень образовательных технологий, используемых при осуществлении образовательного процесса по дисциплине, включая перечень лицензионного программного обеспечения, современных профессиональных баз данных и информационных справочных систем

5.1. Образовательные технологии

При реализации различных видов учебной работы по дисциплине «Основы проектирования информационных систем» используются следующие образовательные технологии:

- технологии проблемного обучения: проблемная лекция, практическое занятие в форме практикума.
 - информационно-коммуникативные образовательные технологии: лекция-визуализация.
- инновационные методы, которые предполагают применение информационных образовательных технологий, а также учебно-методических материалов, соответствующих современному мировому уровню, в процессе преподавания дисциплины:
 - использование медиаресурсов, энциклопедий, электронных библиотек и Интернет;
 - консультирование студентов с использованием электронной почты;
- использование программно-педагогических тестовых заданий для проверки знаний обучающихся.

5.2. Лицензионное программное обеспечение

- В образовательном процессе при изучении дисциплины используется следующее лицензионное программное обеспечение:
 - 1. Лицензии Microsoft Open License (Value) Academic.

Включают продукты Microsoft Office и Microsoft Windows для компьютерных лабораторий и сотрудников института:

- программный продукт Office Home and Business 2016 2шт (товарная накладная TN000011138 от 01.10.19);
- электронная лицензия 02558535ZZE2106 дата выдачи первоначальной лицензии 21.06.2019 (товарная накладная TN000006340 от 03.07.19);
 - 93074333ZZE1602 дата выдачи первоначальной лицензии 21.05.2015;
 - 69578000ZZE1401 дата выдачи первоначальной лицензии 19.01.2012;
 - 69578000ZZE1401 дата выдачи первоначальной лицензии 30.11.2009;
 - 66190326ZZE1111 дата выдачи первоначальной лицензии 30.11.2009;
 - 62445636ZZE0907 дата выдачи первоначальной лицензии 12.07.2007;
 - 61552755ZZE0812 дата выдачи первоначальной лицензии 27.12.2006;
 - 60804292ZZE0807 дата выдачи первоначальной лицензии 06.07.2006.
- 2. Лицензионное соглашение 9334508 1С: Предприятие 8. Комплект для обучения в высших и средних учебных заведениях:
 - Управление производственным предприятием;
 - Управление торговлей;
 - Зарплата и Управление Персоналом;
 - Бухгалтерия.
- 3. Сублицензионный договор №016/220823/006 от 22.08.2023. Неисключительные права на использование программных продуктов «1С: Комплект поддержки» 1С: КП базовый 12 мес. (основной продукт «1С: Предприятие 8. Комплект для обучения в высших и средних учебных заведениях» рег. номер 9334508).
- 4. Договор №ИП20-92 от 01.03.2020 об информационной поддержке и обеспечения доступа к информационным ресурсам Сети Консультант Плюс в объеме комплекта Систем Справочно Правовой Системы Консультант Плюс (число ОД 50).
- 5. Лицензия 1C1C-240118-105136-523-1918 Kaspersky Endpoint Security для бизнеса Стандартный Russian Edition. 50-99 Node 1 year Educational Renewal License (80 Users до 11.04.2025).

- 6. Лицензия №54736 на право использования программного продукта «Система тестирования INDIGO» (бессрочная академическая на 30 подключений от 07.09.2018).
- 7. Договор с ООО «СкайДНС» Ю-04056/1 на оказание услуг контент-фильтрации сроком 12 месяцев от 10 января 2025 года.

5.3. Современные профессиональные базы данных

В образовательном процессе при изучении дисциплины используются следующие современные профессиональные базы данных:

Электронно-библиотечная система «Университетская Библиотека Онлайн» - https://biblioclub.ru/.

Образовательная платформа «Юрайт» - https://www.urait.ru/

Научная электронная библиотека - www.elibrary.ru.

Реферативная и справочная база данных рецензируемой литературы Scopus - https://www.scopus.com.

Политематическая реферативно-библиографическая и наукометрическая (библиометрическая) база данных Web of Science - https://apps.webofknowledge.com

Архив научных журналов НП Национальный Электронно-Информационный Консорциум (НЭИКОН) (arch.neicon.ru)

Научная библиотека открытого доступа - https://cyberleninka.ru

5.4. Информационные справочные системы

Изучение дисциплины сопровождается применением информационных справочных систем:

1. Справочная информационно-правовая система «КонсультантПлюс» (договор № ИП20-92 от 01.03.2020).

6. Оценочные средства и методические материалы по итогам освоения дисциплины

При разработке оценочных средств преподавателем используются базы данных педагогических измерительных материалов, предоставленных ООО «Научно-исследовательский институт мониторинга качества образования».

Типовые задания, база тестов и иные материалы, необходимые для оценки результатов освоения дисциплины (в т.ч. в процессе ее освоения), а также методические материалы, определяющие процедуры этой оценки приводятся в приложении 1 к рабочей программе дисциплины.

Универсальная система оценивания результатов обучения выполняется в соответствии с Положением о формах, периодичности и порядке проведения текущего контроля успеваемости и промежуточной аттестации обучающихся в АНПОО «ККУ», утвержденным приказом директора от 03.02.2020 г. № 31 о/д и включает в себя системы оценок:

- 1) «отлично», «хорошо», «удовлетворительно», «неудовлетворительно»;
- 2) «зачтено», «не зачтено».

7. Основная и дополнительная учебной литература и электронные образовательные ресурсы, необходимые для освоения дисциплины

7.1. Основная учебная литература

- 1. *Грекул, В. И.* Проектирование информационных систем: учебник и практикум для среднего профессионального образования / В. И. Грекул, Н. Л. Коровкина, Г. А. Левочкина. 2-е изд. Москва: Издательство Юрайт, 2025. 404 с. (Профессиональное образование). ISBN 978-5-534-19506-4. Текст: электронный // Образовательная платформа Юрайт [сайт]. URL: https://urait.ru/bcode/566739
- 2. *Григорьев, М. В.* Проектирование информационных систем : учебник для среднего профессионального образования / М. В. Григорьев, И. И. Григорьева. Москва : Издательство Юрайт, 2025. 278 с. (Профессиональное образование). ISBN 978-5-534-16847-1. Текст : электронный // Образовательная платформа Юрайт [сайт]. URL: https://urait.ru/bcode/566741

3. Зыков, С. В. Архитектура информационных систем. Основы проектирования: учебник для среднего профессионального образования / С. В. Зыков. — Москва: Издательство Юрайт, 2025. — 260 с. — (Профессиональное образование). — ISBN 978-5-534-21539-7. — Текст: электронный // Образовательная платформа Юрайт [сайт]. — URL: https://urait.ru/bcode/575501

7.2. Дополнительные источники

- 1. Зараменских, Е. П. Информационные системы: управление жизненным циклом: учебник и практикум для среднего профессионального образования / Е. П. Зараменских. 2-е изд., перераб. и доп. Москва: Издательство Юрайт, 2025. 486 с. (Профессиональное образование). ISBN 978-5-534-21416-1. Текст: электронный // Образовательная платформа Юрайт [сайт]. URL: https://urait.ru/bcode/571329
- 2. Полуэктова, Н. Р. Разработка веб-приложений: учебник для среднего профессионального образования / Н. Р. Полуэктова. 2-е изд. Москва: Издательство Юрайт, 2025. 204 с. (Профессиональное образование). ISBN 978-5-534-18644-4. Текст: электронный // Образовательная платформа Юрайт [сайт]. URL: https://urait.ru/bcode/567621
- 3. Проектирование информационных систем: учебник и практикум для среднего профессионального образования / Д. В. Чистов, П. П. Мельников, А. В. Золотарюк, Н. Б. Ничепорук. 2-е изд., перераб. и доп. Москва: Издательство Юрайт, 2025. 273 с. (Профессиональное образование). ISBN 978-5-534-20362-2. Текст : электронный // Образовательная платформа Юрайт [сайт]. URL: https://urait.ru/bcode/562355
- 4. Стружкин, Н. П. Базы данных: проектирование. Практикум: учебник для среднего профессионального образования / Н. П. Стружкин, В. В. Годин. Москва: Издательство Юрайт, 2025. 291 с. (Профессиональное образование). ISBN 978-5-534-08140-4. Текст: электронный // Образовательная платформа Юрайт [сайт]. URL: https://urait.ru/bcode/565155
- 5. Тузовский, А. Ф. Проектирование и разработка web-приложений: учебник для среднего профессионального образования / А. Ф. Тузовский. Москва: Издательство Юрайт, 2025. 219 с. (Профессиональное образование). ISBN 978-5-534-16767-2. Текст: электронный // Образовательная платформа Юрайт [сайт]. URL: https://urait.ru/bcode/565693
- 6. Чертыковцев, В. К. Проектирование интерфейсов пользователя. Человеко-машинное взаимодействие : учебник для среднего профессионального образования / В. К. Чертыковцев. Москва : Издательство Юрайт, 2024. 111 с. (Профессиональное образование). ISBN 978-5-534-20809-2. Текст : электронный // Образовательная платформа Юрайт [сайт]. URL: https://urait.ru/bcode/558811

7.3. Электронные образовательные ресурсы

- 1. Коллекция Федерального центра информационно-образовательных ресурсов ФЦИОР: http://fcior.edu.ru/
 - 2. Единая коллекция цифровых образовательных ресурсов: http://schoolcollection.edu.ru.
- 3. Федеральный образовательный портал Экономика, Социология, Менеджмент http://ecsocman.hse.ru
 - 4. Единое окно доступа к образовательным ресурсам: http://window.edu.ru/
- 5. Национальный центр информационного противодействия терроризму и экстремизму в образовательной среде и сети Интернет http://ncpti.su/

8. Дополнительные ресурсы информационно-телекоммуникационной сети «Интернет», необходимых для освоения дисциплины

- 1. СПС «Консультант-плюс» www.consultant.ru.
- 2. Электронно-библиотечная система «Университетская Библиотека Онлайн» https://biblioclub.ru/.
 - 3. Научная электронная библиотека www.elibrary.ru.
 - 4. ООО «Электронное издательство Юрайт» www.urait.ru.

9. Требования к минимальному материально-техническому обеспечению, необходимого для осуществления образовательного процесса по дисциплине

Для изучения дисциплины используется любая мультимедийная аудитория. Мультимедийная аудитория оснащена современными средствами воспроизведения и визуализации любой видео и аудио информации, получения и передачи электронных документов.

Типовая комплектация мультимедийной аудитории состоит из:

мультимедийного проектора,

проекционного экрана,

акустической системы,

персонального компьютера (с техническими характеристиками не ниже: процессор не ниже 1.6.GHz, оперативная память – 1 Gb, интерфейсы подключения: USB, audio, VGA.

Преподаватель имеет возможность легко управлять всей системой, что позволяет проводить лекции, практические занятия, презентации, вебинары, конференции и другие виды аудиторной нагрузки обучающихся в удобной и доступной для них форме с применением современных интерактивных средств обучения, в том числе с использованием в процессе обучения всех корпоративных ресурсов. Мультимедийная аудитория также оснащена широкополосным доступом в сеть «Интернет».

Компьютерное оборудованием имеет соответствующее лицензионное программное обеспечение.

Для проведения занятий лекционного типа предлагаются наборы демонстрационного оборудования и учебно-наглядных пособий, обеспечивающие тематические иллюстрации, соответствующие рабочей учебной программе дисциплин.

Помещения для самостоятельной работы обучающихся оснащены компьютерной техникой с возможностью подключения к сети «Интернет» и обеспечены доступом в электронную информационно-образовательную среду Колледжа.

Учебно-методическая литература для данной дисциплины имеется в наличии в электронно-библиотечной системе «Университетская библиотека ONLINE», доступ к которой предоставлен обучающимся. Электронно-библиотечная система «Университетская библиотека ONLINE» реализует легальное хранение, распространение и защиту цифрового контента учебно-методической литературы для вузов с условием обязательного соблюдения авторских и смежных прав. Электронно-библиотечная система «Университетская библиотека ONLINE» обеспечивает широкий законный доступ к необходимым для образовательного процесса изданиям с использованием инновационных технологий и соответствует всем требованиям ФГОС СПО.

Приложение 1 к рабочей программе дисциплины «Основы проектирования информационных систем» (ОП.09)

ОЦЕНОЧНЫЕ СРЕДСТВА ДЛЯ ПРОВЕДЕНИЯ ВХОДНОГО, ТЕКУЩЕГО, РУБЕЖНОГО КОНТРОЛЯ И ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ОБУЧАЮЩИХСЯ ПО ДИСЦИПЛИНЕ И МЕТОДИЧЕСКИЕ МАТЕРИАЛЫ ПО ЕЕ ОСВОЕНИЮ

ОСНОВЫ ПРОЕКТИРОВАНИЯ ИНФОРМАЦИОННЫХ СИСТЕМ (ОП.09)

По специальности 09.02.13 «Интеграция решений с применением

технологий искусственного интеллекта»

Квалификация «Специалист по работе с искусственным

интеллектом»

Форма обучения очная

6.1. Оценочные средства по итогам освоения дисциплины

6.1.1. Цель оценочных средств

Целью оценочных средств является установление соответствия уровня подготовленности обучающегося на данном этапе обучения требованиям рабочей программы по дисциплине «Основы проектирования информационных систем».

Оценочные средства предназначены для контроля и оценки образовательных достижений обучающихся, освоивших программу учебной дисциплины «Основы проектирования информационных систем». Перечень видов оценочных средств соответствует рабочей программе дисциплины.

Комплект оценочных средств включает контрольные материалы для проведения всех видов контроля в форме устного и письменного опроса, практических занятий, и промежуточной аттестации в форме вопросов и заданий к зачету с оценкой.

Структура и содержание заданий — задания разработаны в соответствии с рабочей программой дисциплины «Основы проектирования информационных систем».

6.1.2. Объекты оценивания – результаты освоения дисциплины

Объектом оценивания являются формируемые компетенции ОК 01, ОК 02, ПК 1.2, ПК 1.3.

Результатами освоения дисциплины являются:

уметь:

- применять методы системного анализа и моделирования для проектирования информационных систем в соответствии с требованиями предметной области;
- использовать стандартные нотации и инструменты (например, UML, BPMN, ERмоделирование) для описания архитектуры, процессов и структуры данных информационной системы;

знать:

- основные принципы жизненного цикла информационных систем, методологии проектирования и анализа требований;
- ключевые концепции архитектуры ИС, моделирования бизнес-процессов, проектирования баз данных и взаимодействия компонентов программного обеспечения.

6.1.3. Формы контроля и оценки результатов освоения

Контроль и оценка результатов освоения — это выявление, измерение и оценивание знаний и умений формирующихся компетенций в рамках освоения дисциплины. В соответствии с учебным планом и рабочей программой дисциплины «Основы проектирования информационных систем» предусматривается входной, текущий, рубежный и промежуточный контроль результатов освоения (промежуточная аттестация в форме экзамена).

6.1.4. Примерные (типовые) контрольные задания или иные материалы, необходимые для оценки знаний, умений, владений (или опыта деятельности), в процессе освоения дисциплины характеризующих этапы формирования компетенций в процессе освоения дисциплины

Контрольно-измерительные материалы для текущего контроля по учебной дисциплине Примерная тематика рефератов, сообщений, докладов, презентаций.

- 1. Жизненный цикл разработки информационных систем.
- 2. Анализ требований к информационным системам.
- 3. Моделирование бизнес-процессов с использованием ВРМN.
- 4. Использование UML для проектирования информационных систем.

- 5. Архитектура информационных систем: уровни и компоненты.
- 6. Проектирование баз данных: методы и инструменты.
- 7. Нормализация и денормализация данных в базах данных.
- 8. Информационные системы поддержки принятия решений.
- 9. Применение OLAP и OLTP в информационных системах.
- 10. Безопасность информационных систем: угрозы и методы защиты.
- 11. Проектирование веб-приложений: подходы и технологии.
- 12. Информационные системы в управлении проектами.
- 13. Разработка пользовательских интерфейсов: лучшие практики.
- 14. Облачные технологии и их влияние на проектирование информационных систем.
- 15. Микросервисная архитектура в информационных системах.
- 16. Информационные системы в электронной коммерции.
- 17. Примеры успешных информационных систем в бизнесе.
- 18. Влияние Agile-методологий на проектирование информационных систем.
- 19. Системы управления контентом (СМS): проектирование и реализация.
- 20. Технологии машинного обучения в проектировании информационных систем.
- 21. Взаимодействие информационных систем с внешними системами.
- 22. Применение DevOps в разработке и проектировании информационных систем.
- 23. Основы проектирования мобильных приложений.
- 24. Информационные системы для управления взаимоотношениями с клиентами (CRM).
- 25. Системы автоматизации бизнес-процессов.
- 26. Принципы проектирования распределенных информационных систем.
- 27. Роль данных в проектировании информационных систем.
- 28. Этические аспекты проектирования информационных систем.
- 29. Информационные системы в здравоохранении.
- 30. Использование искусственного интеллекта в информационных системах.
- 31. Проектирование систем для анализа больших данных (Big Data).
- 32. Кроссплатформенные решения в проектировании информационных систем.
- 33. Применение блокчейн-технологий в информационных системах.
- 34. Тестирование информационных систем: методы и подходы.
- 35. Проектирование систем управления производственными процессами.
- 36. Информационные системы в образовании: тенденции и примеры.
- 37. Системы мониторинга и управления ресурсами.
- 38. Применение интерфейсов программирования приложений (API) в проектировании.
- 39. Влияние социальных сетей на проектирование информационных систем.
- 40. Будущее проектирования информационных систем: тренды и прогнозы.

ЗАДАНИЕ № 1

Задания в тестовой форме. Студентам предлагаются 10 вопросов с одним правильным ответом.

Вопрос 1. Что такое информационная система?

- А. Система, предназначенная для хранения и обработки данных
- В. Система, используемая для управления производственными процессами
- С. Система, обеспечивающая безопасность данных
- D. Система, предназначенная для передачи данных

Ответ: А. Система, предназначенная для хранения и обработки данных

Вопрос 2. Какие основные компоненты входят в состав информационной системы?

- А. Аппаратное обеспечение, программное обеспечение, данные, пользователи
- В. Серверы, рабочие станции, сетевое оборудование
- С. База данных, операционная система, приложения
- D. Интернет, локальная сеть, удаленный доступ

Ответ: А. Аппаратное обеспечение, программное обеспечение, данные, пользователи

Вопрос 3. Что такое аппаратное обеспечение информационной системы?

- А. Компьютеры, серверы, сетевое оборудование
- В. Операционные системы, базы данных, приложения
- С. Пользователи, администраторы, разработчики
- Процессы и процедуры, связанные с обработкой данных

Ответ: А. Компьютеры, серверы, сетевое оборудование

Вопрос 4. Что такое программное обеспечение информационной системы?

- А. Операционные системы, утилиты, приложения
- В. Сетевые протоколы, маршругизаторы, коммутаторы
- С. Данные, хранящиеся в базе данных
- D. Пользовательские интерфейсы, отчеты, аналитика

Ответ: А. Операционные системы, утилиты, приложения

Вопрос 5. Что такое база данных в контексте информационной системы?

- А. Набор данных, организованных таким образом, чтобы их можно было эффективно управлять
- В. Программа для обработки данных
- С. Устройство для хранения данных
- D. Сеть для передачи данных

Ответ: А. Набор данных, организованных таким образом, чтобы их можно было эффективно управлять

Вопрос 6. Какие типы пользователей могут быть в информационной системе?

- А. Администраторы, операторы, конечные пользователи
- В. Разработчики, тестировщики, аналитики
- С. Менеджеры, руководители, консультанты
- D. Продавцы, покупатели, клиенты

Ответ: А. Администраторы, операторы, конечные пользователи

Вопрос 7. Что такое транзакция в контексте информационной системы?

- А. Последовательность операций, выполняемая как единое целое
- В. Передача данных между пользователями
- С. Запись данных в базу данных
- D. Получение отчета из системы

Ответ: А. Последовательность операций, выполняемая как единое целое

Вопрос 8. Что такое безопасность данных в информационной системе?

- А. Меры, направленные на защиту данных от несанкционированного доступа
- В. Процедура резервного копирования данных
- С. Механизм восстановления данных после сбоя
- D. Протоколы передачи данных

Ответ: А. Меры, направленные на защиту данных от несанкционированного доступа

Вопрос 9. Что такое отказоустойчивость информационной системы?

- А. Способность системы продолжать работу даже при возникновении неисправностей
- В. Скорость обработки данных
- С. Объем хранимых данных
- D. Удобство пользовательского интерфейса

Ответ: А. Способность системы продолжать работу даже при возникновении неисправностей

Вопрос 10. Что такое интеграция информационных систем?

- А. Объединение нескольких информационных систем для совместной работы
- В. Разделение одной информационной системы на несколько частей
- С. Установка нового оборудования
- D. Обновление программного обеспечения

Ответ: А. Объединение нескольких информационных систем для совместной работы

ЗАДАНИЕ № 2

Задания в тестовой форме. Студентам предлагаются 10 вопросов с одним правильным ответом.

Вопрос 1. Какие основные этапы включает проектирование информационных систем?

- А. Анализ требований, проектирование, реализация, тестирование, внедрение
- В. Планирование, разработка, тестирование, эксплуатация
- С. Проектирование, реализация, тестирование, документирование
- D. Анализ требований, проектирование, тестирование, внедрение

Ответ: А. Анализ требований, проектирование, реализация, тестирование, внедрение

Bonpoc 2. Что включает в себя этап анализа требований при проектировании информационной системы?

- А. Определение функциональных и нефункциональных требований к системе
- В. Разработка технического задания
- С. Создание прототипа системы
- D. Проведение тестирования системы

Ответ: А. Определение функциональных и нефункциональных требований к системе

Вопрос 3. Что такое функциональные требования к информационной системе?

- А. Требования, описывающие поведение системы в ответ на внешние воздействия
- В. Требования, касающиеся производительности и надежности системы
- С. Требования, касающиеся удобства использования системы
- D. Требования, касающиеся безопасности системы

Ответ: А. Требования, описывающие поведение системы в ответ на внешние воздействия

Вопрос 4. Что такое нефункциональные требования к информационной системе?

- А. Требования, описывающие поведение системы в ответ на внешние воздействия
- В. Требования, касающиеся производительности, надежности, удобства использования и безопасности системы
- С. Требования, касающиеся стоимости разработки и эксплуатации системы
- Требования, касающиеся совместимости с другими системами

Ответ: В. Требования, касающиеся производительности, надежности, удобства использования и безопасности системы

Вопрос 5. Что включает в себя этап проектирования информационной системы?

- А. Разработка архитектуры системы, создание моделей данных и процессов
- В. Кодирование и тестирование программы
- С. Внедрение системы в эксплуатацию
- D. Обучение пользователей работе с системой

Ответ: А. Разработка архитектуры системы, создание моделей данных и процессов

Вопрос 6. Что такое архитектура информационной системы?

- А. Общая структура системы, включающая взаимодействие компонентов
- В. Детальный дизайн отдельных модулей системы
- С. План внедрения системы
- D. Руководство пользователя

Ответ: А. Общая структура системы, включающая взаимодействие компонентов

Вопрос 7. Что такое модели данных в контексте проектирования информационных систем?

- А. Абстрактные представления данных, используемых в системе
- В. Физическое размещение данных на устройствах хранения
- С. Способы обработки данных
- D. Методы защиты данных

Ответ: А. Абстрактные представления данных, используемых в системе

Вопрос 8. Что включает в себя этап реализации информационной системы?

- А. Кодирование и тестирование программы
- В. Разработка документации
- С. Обучение пользователей
- D. Эксплуатация системы

Ответ: А. Кодирование и тестирование программы

Вопрос 9. Что включает в себя этап тестирования информационной системы?

- А. Проверка соответствия системы требованиям, выявленным на этапе анализа
- В. Обучение пользователей работе с системой
- С. Разработка технической документации
- D. Внедрение системы в эксплуатацию

Ответ: А. Проверка соответствия системы требованиям, выявленным на этапе анализа

Вопрос 10. Что включает в себя этап внедрения информационной системы?

- А. Переход от старой системы к новой, обучение пользователей, запуск системы в эксплуатацию
- В. Разработка технического задания
- С. Проектирование архитектуры системы
- D. Кодирование и тестирование программы

Ответ: А. Переход от старой системы к новой, обучение пользователей, запуск системы в эксплуатацию

ЗАДАНИЕ № 3

Задания в тестовой форме. Студентам предлагаются 10 вопросов с одним правильным ответом.

Bonpoc 1. Что такое CASE-инструменты и для чего они используются?

А. Инструменты для автоматизированного проектирования информационных систем

- В. Инструменты для тестирования программного обеспечения
- С. Инструменты для управления проектами
- D. Инструменты для анализа данных

Ответ: А. Инструменты для автоматизированного проектирования информационных систем

Вопрос 2. Какие основные функции выполняют САЅЕ-инструменты?

- А. Моделирование, генерация кода, тестирование, документация
- В. Проектирование интерфейсов, анализ требований, управление версиями
- С. Управление базой данных, анализ производительности, защита данных
- Разработка мобильных приложений, управление контентом, маркетинг

Ответ: А. Моделирование, генерация кода, тестирование, документация

Вопрос 3. Что такое UML (Unified Modeling Language) и для чего он используется?

- А. Язык моделирования, предназначенный для визуализации, спецификации, конструирования и документирования артефактов программного обеспечения
- В. Язык программирования, используемый для разработки веб-приложений
- С. Язык разметки, используемый для создания документов
- D. Язык запросов, используемый для работы с базами данных

Ответ: А. Язык моделирования, предназначенный для визуализации, спецификации, конструирования и документирования артефактов программного обеспечения

Вопрос 4. Какие основные диаграммы входят в состав UML?

- А. Диаграммы классов, последовательности, состояний, деятельности
- В. Диаграммы потоков данных, сущностей и связей, контекстные диаграммы
- С. Диаграммы Ганта, PERT, матрицы ответственности
- D. Диаграммы Венна, блок-схемы, схемы алгоритмов

Ответ: А. Диаграммы классов, последовательности, состояний, деятельности

Bonpoc 5. Что такое ER-диаграммы (Entity-Relationship Diagrams) и для чего они используются?

- А. Диаграммы, предназначенные для моделирования данных и отношений между ними
- В. Диаграммы, используемые для проектирования пользовательских интерфейсов
- С. Диаграммы, применяемые для анализа бизнес-процессов
- Диаграммы, служащие для отображения структуры программного кода

Ответ: А. Диаграммы, предназначенные для моделирования данных и отношений между ними

Вопрос 6. Какие основные элементы входят в состав ЕR-диаграмм?

- А. Сущности, атрибуты, отношения
- В. Классы, объекты, ассоциации
- С. Таблицы, столбцы, индексы
- D. Узлы, ребра, веса

Ответ: А. Сущности, атрибуты, отношения

Вопрос 7. Что такое BPwin и для чего он используется?

- А. Инструмент для моделирования бизнес-процессов
- В. Инструмент для проектирования баз данных
- С. Инструмент для разработки программного обеспечения
- D. Инструмент для анализа данных

Ответ: А. Инструмент для моделирования бизнес-процессов

Bonpoc 8. Что такое Rational Rose и для чего он используется?

- А. Инструмент для объектно-ориентированного анализа и проектирования, поддерживающий UML
- В. Инструмент для управления проектами
- С. Инструмент для тестирования программного обеспечения
- D. Инструмент для анализа данных

Ответ: А. Инструмент для объектно-ориентированного анализа и проектирования, поддерживающий UML

Вопрос 9. Что такое Visio и для чего он используется?

- А. Инструмент для создания диаграмм и схем различного рода
- В. Инструмент для проектирования баз данных
- С. Инструмент для разработки программного обеспечения
- D. Инструмент для анализа данных

Ответ: А. Инструмент для создания диаграмм и схем различного рода

Bonpoc 10. Что такое ArchiMate и для чего он используется?

- А. Язык моделирования архитектуры предприятия
- В. Язык программирования
- С. Язык разметки
- D. Язык запросов

Ответ: А. Язык моделирования архитектуры предприятия

ЗАДАНИЕ №4

Задания в тестовой форме. Студентам предлагаются 10 вопросов с одним правильным ответом.

Вопрос 1. Что такое пользовательский интерфейс (UI) в контексте проектирования информационных систем?

- А. Часть системы, которая обеспечивает взаимодействие пользователя с системой
- В. Часть системы, отвечающая за хранение и обработку данных
- С. Часть системы, отвечающая за безопасность данных
- Иасть системы, отвечающая за управление ресурсами

Ответ: А. Часть системы, которая обеспечивает взаимодействие пользователя с системой

Bonpoc 2. Какие основные принципы проектирования пользовательских интерфейсов вы знаете?

- А. Простота, интуитивность, доступность
- В. Производительность, масштабируемость, надежность
- С. Безопасность, конфиденциальность, целостность
- D. Совместимость, переносимость, интероперабельность

Ответ: А. Простота, интуитивность, доступность

Вопрос 3. Что такое модуль в контексте проектирования информационных систем?

- А. Независимая часть системы, выполняющая определенную функцию
- В. Элемент пользовательского интерфейса
- С. Средство для хранения данных
- D. Средство для защиты данных

Ответ: А. Независимая часть системы, выполняющая определенную функцию

Вопрос 4. Какие преимущества дает модульный подход к проектированию информационных систем?

- А. Упрощение разработки, возможность повторного использования, облегчение тестирования
- В. Повышение производительности, снижение затрат на разработку
- С. Улучшение безопасности, повышение надежности
- Увеличение скорости обработки данных, уменьшение нагрузки на систему

Ответ: А. Упрощение разработки, возможность повторного использования, облегчение тестирования

Вопрос 5. Какие методы проектирования интерфейсов вы знаете?

- А. Прототипирование, каркасы, макеты
- В. Аналитический, синтетический, имитационный
- С. Декомпозиция, агрегирование, инкапсуляция
- D. Каскадный, спиральный, V-образный

Ответ: А. Прототипирование, каркасы, макеты

Вопрос 6. Что такое прототипирование в контексте проектирования интерфейсов?

- А. Создание упрощенной версии интерфейса для демонстрации и тестирования
- В. Создание полной версии интерфейса с учетом всех деталей
- С. Создание модели данных для хранения информации
- D. Создание модуля для обработки данных

Ответ: А. Создание упрощенной версии интерфейса для демонстрации и тестирования

Вопрос 7. Что такое каркас в контексте проектирования интерфейсов?

- А. Базовая структура интерфейса, на основе которой создается окончательный вариант
- В. Средства для разработки интерфейсов
- С. Методы проектирования интерфейсов
- Правила и рекомендации по созданию интерфейсов

Ответ: А. Базовая структура интерфейса, на основе которой создается окончательный вариант

Вопрос 8. Что такое декомпозиция в контексте проектирования модулей?

- А. Разбиение сложной задачи на более простые подзадачи
- В. Объединение нескольких модулей в один
- С. Тестирование отдельных модулей
- D. Документирование модулей

Ответ: А. Разбиение сложной задачи на более простые подзадачи

Вопрос 9. Что такое агрегация в контексте проектирования модулей?

- А. Группировка нескольких модулей в один комплекс
- В. Разбиение сложного модуля на более простые модули
- С. Объединение нескольких интерфейсов в один
- D. Тестирование нескольких модулей одновременно

Ответ: А. Группировка нескольких модулей в один комплекс

Вопрос 10. Что такое инкапсуляция в контексте проектирования модулей?

А. Скрытие внутренней реализации модуля и предоставление только необходимых интерфейсов для взаимодействия

- В. Открытие внутренней реализации модуля для внешних систем
- С. Возможность расширения функционала модуля
- D. Возможность замены одного модуля другим

Ответ: А. Скрытие внутренней реализации модуля и предоставление только необходимых интерфейсов для взаимодействия

ЗАДАНИЕ №5

Задания в тестовой форме. Студентам предлагаются 10 вопросов с одним правильным ответом.

Вопрос 1. Что такое экономическая эффективность информационной системы?

- А. Соотношение затрат на разработку и эксплуатацию системы к получаемым выгодам
- В. Степень удовлетворения пользователей системой
- С. Уровень безопасности системы
- D. Время, необходимое для внедрения системы

Ответ: А. Соотношение затрат на разработку и эксплуатацию системы к получаемым выгодам

Вопрос 2. Какие основные показатели используются для оценки экономической эффективности информационной системы?

- А. Себестоимость, рентабельность, срок окупаемости
- В. Надежность, безопасность, производительность
- С. Удобство использования, простота интерфейса
- D. Масштабируемость, гибкость, совместимость

Ответ: А. Себестоимость, рентабельность, срок окупаемости

Вопрос 3. Что такое себестоимость информационной системы?

- А. Совокупность затрат на разработку, внедрение и поддержку системы
- В. Стоимость приобретения лицензий на программное обеспечение
- С. Затраты на обучение персонала
- D. Затраты на модернизацию оборудования

Ответ: А. Совокупность затрат на разработку, внедрение и поддержку системы

Вопрос 4. Что такое рентабельность информационной системы?

- А. Показатель, отражающий соотношение прибыли и затрат на систему
- В. Показатель, отражающий степень удовлетворенности пользователей системой
- С. Показатель, отражающий уровень безопасности системы
- Показатель, отражающий время, необходимое для внедрения системы

Ответ: А. Показатель, отражающий соотношение прибыли и затрат на систему

Вопрос 5. Что такое срок окупаемости информационной системы?

- А. Период времени, необходимый для покрытия затрат на систему за счет полученной выгоды
 - В. Период времени, необходимый для полного внедрения системы
- С. Период времени, необходимый для достижения максимальной производительности системы
 - D. Период времени, необходимый для обучения персонала работе с системой

Ответ: А. Период времени, необходимый для покрытия затрат на систему за счет полученной выгоды

Вопрос 6. Какие методы оценки экономической эффективности информационных систем вы знаете?

- А. Метод чистой текущей стоимости, метод расчета периода окупаемости, метод рентабельности инвестиций
- В. Метод сравнения альтернативных вариантов, метод анализа чувствительности
- С. Метод АВС-анализа, метод функционально-стоимостного анализа
- D. Метод Парето, метод критического пути

Ответ: А. Метод чистой текущей стоимости, метод расчета периода окупаемости, метод рентабельности инвестиций

Вопрос 7. Что такое чистая текущая стоимость (NPV)?

- А. Разница между дисконтированными денежными потоками от операционной деятельности и первоначальными инвестициями
- В. Сумма денежных средств, которую организация планирует инвестировать в развитие системы
- С. Сумма денежных средств, необходимая для поддержания работоспособности системы
- D. Сумма денежных средств, потраченная на разработку системы

Ответ: А. Разница между дисконтированными денежными потоками от операционной деятельности и первоначальными инвестициями

Вопрос 8. Что такое внутренняя норма доходности (IRR)?

- А. Ставка дисконта, при которой NPV равен нулю
- В. Максимальная ставка дисконта, при которой проект остается выгодным
- С. Минимальная ставка дисконта, при которой проект становится убыточным
- D. Средняя ставка дисконта, применяемая для оценки проектов

Ответ: А. Ставка дисконта, при которой NPV равен нулю

Вопрос 9. Что такое индекс прибыльности (РІ)?

- А. Отношение чистого дохода к капитальным вложениям
- В. Отношение валового дохода к чистым затратам
- С. Отношение чистых доходов к чистым расходам
- Отношение прибыли к затратам на разработку системы

Ответ: А. Отношение чистого дохода к капитальным вложениям

Вопрос 10. Что такое анализ чувствительности?

- А. Оценка влияния изменений в параметрах проекта на экономические показатели
- В. Оценка степени удовлетворения пользователей системой
- С. Оценка риска отказа системы
- D. Оценка сроков внедрения системы

Ответ: А. Оценка влияния изменений в параметрах проекта на экономические показатели

Вопросы для итоговой аттестации

- 1. Этапы проектирования информационных систем.
- 2. Перечислить основные этапы проектирования информационных систем.
- 3. Описать важность каждого этапа в процессе проектирования.
- 4. Объектно-ориентированное проектирование.
- 5. Что такое объектно-ориентированное проектирование?
- 6. Как реализуются принципы наследования и полиморфизма в объектноориентированных системах?
 - 7. Языки программирования для разработки информационных систем.
 - 8. Какие языки программирования наиболее широко используются для

разработки информационных систем?

- 9. Привести примеры языков программирования, таких как Python, Java, С#, и другие.
- 10. Модели данных и их проектирование.
- 11. Что такое модель данных?
- 12. Как разрабатываются модели данных для различных типов информационных систем?
- 13. Средства разработки и тестирования информационных систем.
- 14. Какие инструменты используются для разработки и тестирования информационных систем?
 - 15. Привести примеры инструментов, таких как JUnit, NUnit, PyTest, Docker, Kubernetes.
 - 16. Архитектурные паттерны и стили проектирования.
 - 17. Что такое архитектурный паттерн?
- 18. Привести примеры архитектурных паттернов, таких как MVC, MVP, клиентсерверная архитектура.
 - 19. Интеграция информационных систем с существующими системами.
 - 20. Как происходит интеграция информационных систем с уже существующими системами?
 - 21. Проблемы, возникающие при интеграции, и способы их решения.
 - 22. Обеспечение безопасности и устойчивости информационных систем.
 - 23. Как обеспечить безопасность данных в информационной системе?
 - 24. Методы обеспечения стабильности и отказоустойчивости информационных систем.
 - 25. Методы оценки качества разработанных информационных систем.
 - 26. Как оценивается качество информационной системы?
- 27. Инструменты и методики для оценки качества разработки и функционирования информационных систем.
 - 28. Документация и сопровождение информационных систем.
 - 29. Важность документации в процессе разработки информационных систем.
 - 30. Необходимость сопровождения и модернизации информационных систем.

Критерии оценки промежуточной аттестации в виде зачета с оценкой:

- оценка «отлично» выставляется студенту, если студент демонстрирует: знание фактического материала, усвоение общих представлений, понятий, идей; полную степень обоснованности аргументов и обобщений, всесторонность раскрытия темы; наличие знаний интегрированного характера, способность к обобщению; устную и письменную культуру в ответе и оформлении. Соблюдает логичность и последовательность изложения материала. Использует корректную аргументацию и систему доказательств, достоверные примеры, иллюстративный материал, литературные источники;
- оценка «хорошо» выставляется студенту, если студент демонстрирует: знание фактического материала, усвоение общих представлений; достаточную степень обоснованности аргументов и обобщений; способность к обобщению, устную и письменную культуру в ответе и оформлении. Соблюдает логичность и последовательность изложения материала. Использует достоверные примеры, иллюстративный материал;
- оценка «удовлетворительно» выставляется студенту, если студент демонстрирует: недостаточное знание фактического материала; неполную степень обоснованности аргументов и обобщений. Нарушает устную и письменную культуру в ответе и оформлении. Соблюдает логичность и последовательность изложения материала. Использует достоверные примеры;

- оценка «неудовлетворительно» выставляется студенту, если студент демонстрирует: незнание фактического материала; неполную степень обоснованности аргументов и обобщений. Не соблюдает логичность и последовательность изложения материала, устную и письменную культуру в ответе и оформлении. Использует недостоверные примеры.

6.2. Методические рекомендации и указания

6.2.1. Методические указания для обучающихся по освоению учебной дисциплины

Специфика изучения учебной дисциплины ОП.09 «Основы проектирования информационных систем» обусловлена формой обучения студентов, ее местом в подготовке специалиста среднего звена и временем, отведенным на освоение учебной дисциплины рабочим учебным планом.

Процесс обучения делится на время, отведенное для занятий, проводимых в аудиторной форме (лекции, практические занятия) и время, выделенное на внеаудиторное освоение учебной дисциплины, в том числе и на самостоятельную работу студента.

Лекционная часть учебного курса для студентов проводится в форме обзоров по основным темам. Практические занятия предусмотрены для закрепления теоретических знаний, углубленного рассмотрения наиболее сложных проблем учебной дисциплины, выработки навыков структурно-логического построения учебного материала и отработки навыков самостоятельной подготовки.

Самостоятельная работа студента включает в себя изучение теоретического материала, выполнение практических заданий, подготовку к контрольно-обобщающим мероприятиям.

Для освоения учебной дисциплины студенты должны:

- изучить материал лекционных и практических занятий в полном объеме по разделам учебной дисциплины;
- выполнить задание, отведенное на самостоятельную работу: подготовить и защитить реферат по утвержденной преподавателем теме;
- продемонстрировать сформированность компетенций, закрепленных за учебной дисциплиной во время мероприятий текущего и промежуточного контроля знаний.

Посещение лекционных и практических занятий для студентов является обязательным. Уважительными причинами пропуска аудиторных занятий является:

- освобождение от занятий по причине болезни, выданное медицинским учреждением,
- распоряжение по деканату, приказ по вузу об освобождении в связи с участием в внутривузовских, межвузовских и пр. мероприятиях,
- официально оформленное свободное посещение занятий. Пропуски отрабатываются независимо от их причины.

Пропущенные темы лекционных занятий должны быть законспектированы в тетради для лекций, конспект представляется преподавателю для ликвидации пропуска. Пропущенные практические занятия отрабатываются в виде устной защиты практического занятия во время консультаций по дисциплине.

Контроль сформированности компетенций в течение семестра проводится в форме устного опроса на практических занятиях, тестового контроля, выполнения заданий для самостоятельной работы и выполнения контрольных работ по теоретическому курсу дисциплины.

6.2.2. Методические рекомендации по выполнению самостоятельной работы студентов

Специфика изучения учебной дисциплины ОП.09 «Основы проектирования информационных систем» обусловлена формой обучения студентов, ее местом в подготовке специалиста среднего звена и временем, отведенным на освоение учебной дисциплины рабочим учебным планом.

Процесс обучения делится на время, отведенное для занятий, проводимых в аудиторной форме (лекции, практические занятия) и время, выделенное на внеаудиторное освоение учебной дисциплины, в том числе и на самостоятельную работу студента.

Лекционная часть учебного курса для студентов проводится в форме обзоров по основным темам. Практические занятия предусмотрены для закрепления теоретических знаний, углубленного рассмотрения наиболее сложных проблем учебной дисциплины, выработки навыков структурно-логического построения учебного материала и отработки навыков самостоятельной подготовки.

Самостоятельная работа студента включает в себя изучение теоретического материала, выполнение практических заданий, подготовку к контрольно-обобщающим мероприятиям.

Для освоения учебной дисциплины студенты должны:

- изучить материал лекционных и практических занятий в полном объеме по разделам учебной дисциплины;
 - выполнить задание, отведенное на самостоятельную работу;
- продемонстрировать сформированность компетенций, закрепленных за учебной дисциплиной во время мероприятий текущего и промежуточного контроля знаний.

Посещение лекционных и практических занятий для студентов является обязательным. Уважительными причинами пропуска аудиторных занятий является:

- освобождение от занятий по причине болезни, выданное медицинским учреждением,
- по распоряжению декана, приказ по вузу об освобождении в связи с участием в внутривузовских, межвузовских и пр. мероприятиях,
- официально оформленное свободное посещение занятий. Пропуски отрабатываются независимо от их причины.

Пропущенные темы лекционных занятий должны быть законспектированы в тетради для лекций, конспект представляется преподавателю для ликвидации пропуска. Пропущенные практические занятия отрабатываются в виде устной защиты практического занятия во время консультаций по дисциплине.

Контроль сформированности компетенций в течение семестра проводится в форме устного опроса на практических занятиях, контроля практических работ, выполнения заданий для самостоятельной работы